Ежеквартальный журнал Российской ассоциации содействия ООН

Поиск по статьям:

Электричество, которое сначала открыли, а затем изобрели

2023-12-08 11:28:24, Рубрики: ФИЛАТЕЛИЯ.РУ

Это началось еще с древних времен, когда нашли магнитные руды, которые могли притягивать к себе железные предметы и ориентироваться в пространстве строго в определенном направлении. Назвали их магнитами, вероятнее всего, по названию территории Магнисии на месте современного Измира в Турции.

Но еще были известны янтарь и стекло, которые, если их потереть, тоже становились магнитами, но притягивали совсем другие предметы.

Современная наука об электричестве начала формироваться в XVI веке. И не без помощи коронованных особ, в частности Елизаветы I. 

Во времена испанской Армады корабельный компа́с играл не последнюю роль 

Первым, кто отделил магниты от веществ, способных электризоваться и притягивать к себе мелкие частицы, был Уильям Джильберт. Он считал, что природное магнитное железо стало таким благодаря Земле, которая сама является большим магнитом. Поэтому компас и ориентируется строго по полюсам. Еще ученого заинтересовал «эффект янтаря», и с его подачи появился термин «электричество». В своих печатных работах он впервые разделил магнетизм и статическое электричество.

«Уильям Джильберт демонстрирует магнит королеве Елизавете I в 1598 году». Худ. Эрнест Борд

Шарль Франсуа Дюфе выявил два рода электричества – «стеклянное» и «смоляное». Первое получается при натирании стекла, шерсти животных. Второе – при использовании янтаря, смолы. Разнородные электричества притягиваются друг к друг, однородные – отталкиваются. А это уже первая электрическая теория.

Вскоре появится первая электрическая машина трения. Отто фон Герике бросил демонстрировать свои Магдебургские колокола и создал, вращающийся на металлическом стержне, шар из чистой серы, который электризовался от трения о руки человека. Герике показал, что заряд можно передавать на расстояние посредством льняной нити – первым рукотворным проводником электричества.

В 1745 году, в славном научном граде Лейден, был создан первый конденсатор, позволяющий копить и сохранять полученный электрический заряд. Автором изобретения считается голландец Питер ван Мушенбрук.

Устройство назвали «лейденской банкой». Это стеклянный сосуд, оклеенный снаружи листовым оловом. Внутри было листовое олово или обычная вода. Для контакта с внутренней обкладкой, через горловину вставляли металлический прут. Такое устройство можно было заряжать статическим электричеством.

На основе этого изобретения создали первую электрическую цепь с последовательным соединением проводников. Было это во времена Людовика XV. Его сподвижник, физик и аббат Жан-Антуан Нолле, изобретатель электроскопа, демонстрировал перед королем в Версале как 180 мушкетеров, взявшись крепко за руки, словно по команде, одновременно вскрикивали и делали судорожные движения. Скорость распространения электричества была практически мгновенная.

Позже в таком же эксперименте поучаствуют 200 духовных братьев из парижских монастырей, составивших цепь контуженных монахов. Это стало самым модным зрелищем той поры. Многие смельчаки из публики хотели на себе испытать удар электрического разряда от «банки смерти».

Практически сразу же после этого наступило время человека «отнявшего молнию у небес и власть у тиранов». Конституцию Соединенных Штатов Америки отставим в сторону и поговорим о вкладе Бенджамина Франклина в развитие учения об электричестве.

Во-первых, он изменил теорию Дюфе о двух родах электричества. Электричество бывает только одно. Разделение материалов на два класса объясняется избытком или недостатком этого самого электричества. У «стеклянного» электричества имеется избыток, поэтому это «+». У «смоляного» - недостаток, поэтому это «-».

Во-вторых, о существовании электрона еще никто не подозревал, но заряд уже перемещался от плюса, где его много, к минусу, где его мало.

В-третьих, заряд мог концентрироваться на острых выступах предметов и даже стекать с них, электризуя воздух. На опытах было показано, как заряд с острия иглы сдувает пламя свечи или вращает колесо, создавая движущую силу (колесо Франклина). Это свойство стекания заряда с острия позволило при изучении природы молнии создать от нее защиту в виде громоотвода. Атмосферное электричество имеет ту же природу, что и получаемое от трения в лабораторных условиях и быту.

Среди ученых, занимавшихся изучением электричества, был один, который интересовался не столько его природой, но и тем, как измерить величину зарядов и силу взаимодействия между ними.

Наверное, вы уже догадались, что речь идет о Шарле Кулоне и его законе.

Оказалось, что заряды взаимодействуют так же, как и планеты в законе Всемирного тяготения. Это было установлено с помощью крутильных весов, изобретенных Кулоном.

Полученная формула – почти калька с закона тяготения Исаака Ньютона. Заряды выступают вместо масс планет. Гравитационная постоянная была заменена на относительную диэлектрическую проницаемость среды k. Разница в том, что заряды могут еще и отталкиваться друг от друга. Все зависит от их знака. Поэтому значения величин берутся по модулю. Прослеживается общность законов природы. Как яблоко Ньютона притягивает к себе Землю, так и сухие волосы притягиваются к расчестке.

Электричество становилось точной наукой. Не хватало только общей теории. Исправил ситуацию Георг Ом. Он, введя понятие сопротивления R, теоретически, с практическим подтверждением результатов, открыл свой знаменитый закон. Сила тока во всех точках электрической цепи одинакова. Зависит от электродвижущей силы и сопротивления цепи.

Такой простой закон был принят научным сообщество скептически. Официально он стал законом, когда появилось подтверждение в виде законов Густава Кирхгофа о ветвлении токов и всеобщего закона сохранения энергии Германа Гельмгольца.

Настало время изобретения электричества. Знаний было накоплено уже достаточно. Сделали это Луиджи Гальвани и Алессандро Вольта. Первый, препарируя лягушку рядом с электрической машиной, обратил внимание, что мышцы земноводного сокращаются под воздействием электрического заряда. Второй, очень внимательный человек, заметил, что это происходит, если электрическая цепь замкнута, а в качестве проводников используются разнородные металлы.

Все знают с детства, как пощипывает на языке контакты батарейки, и какой у нее вкус – с кислинкой. Вольтов столб состоял из пар разнородных пластин, например, цинк и медь. Между ними – прокладка из бумаги, пропитанная щелочным раствором. Такая конструкция генерировала постоянный ток. Цинковая пластина давала минус, медная – плюс. Такую ячейку назвали гальваническим элементом. Вольта установил свой первый стандартный ряд электродных потенциалов: Zn→Pb→Sn→Fe→Cu→Ag→Au→C. Сила генератора постоянного тока зависела от выбора пары элементов из этого ряда и их количества.

В 1800 году наступила эра электричества. Благодаря Алессандро Вольта мир получил генератор постоянного тока. Был создан первый источник освещения электрическим током. Авторство принадлежит русскому ученому Василию Петрову. Собрав в 1803 году вольтов столб из 4200 медных и цинковых кругов и напряжением в 1700 вольт, он осветил светом комнату от электрической дуги. Вот только почтовую марку в его честь выпустить не представляется невозможным. История не сохранила ни одного его портрета.

Но есть почтовые миниатюры, посвященные изобретениям Павлу Яблочкову и Николаю Бенардосу, которые тоже нашли практическое применение дуге Вольта.

Гальванизм – новый термин. Потом его назовут электролизом. Он пришелся по душе химикам. Взяв воду из реки и пропустив через нее ток, они получили на разных полюсах водород и кислород. Причем водорода по объему получилось в два раза больше, чем кислорода. Чем не химическая формула Н2О?

Хамфри Дэви стал основоположником первой электрохимической теории. С помощью электрического тока он получил новые элементы: калий, натрий, магний, стронций, барий, кальций, литий. А приняв на работу в лабораторию мыть пробирки молодого подмастерья переплетчика, дал миру Майкла Фарадея. Его электрохимическую теорию поддержал Йёнс Якоб Берцелиус. Все атомы в веществе несут либо положительный, либо отрицательный заряд. Мы и сейчас химические формулы пишем, как завещал великий Берцелиус, присваивая атомам ту или иную валентность.

В 1819 году ученые опять вернулись к магниту и больше с ним не расставались. Ханс Эрстед сделал открытие – воздействие электрического тока на магнитную стрелку. Над магнитной стрелкой помещался прямолинейный провод, направленный ей параллельно, т.е. с юга на север. При пропускании электрического тока стрелка поворачивалась перпендикулярно проводнику. Обратное направление тока приводило к повороту стрелки на 180 градусов. И все равно, перпендикулярность оставалась прежней, даже при криволинейном проводе (для каждого участка она была своя). Теперь электрический ток и магнит будут неразрывно вместе, а их поля останутся взаимно перпендикулярными.

Андре-Мари Ампер был первым, кто теоретически обосновал связь между электричеством и магнетизмом. К этому его подтолкнул его друг Доминик Араго, который установил, что провод с током намагничивает железные опилки. По сути, это был первый электромагнит.

Ампер пошел дальше. Уже два параллельных провода, при пропускании по ним тока, начинали притягиваться или отталкиваться друг от друга. В результате многочисленных опытов был сделан вывод о единой сущности электричества и магнетизма. И были заложены основы нового направления физики – электродинамики.

Электродинамика как самостоятельная наука начала развиваться, когда Майкл Фарадей решил превратить магнетизм в электричество. И выполнил эту задачу с блеском. Попытка использовать электромагнит в обратном направлении – с помощью магнита получить электрический ток – привела к открытию электромагнитной индукции. Изменение внешнего магнитного поля вызвало появление электродвижущей силы в проводнике. В результате был построен первый электрогенератор постоянного тока.

Второе направление исследований Фарадея – электрохимия. Без открытых им двух законов, связанных с электролизом, невозможно представить сегодняшнее получение алюминия и меди, водорода и хлора. Есть еще масштабное производство аккумуляторов. Кроме этого, существуют промышленные процессы по нанесению защитных покрытий (гальваностегия, анодирование), воспроизведение форм предметов (гальванопластика). Так что, идея гальванизма живет и процветает.

В 1865 году Джеймс Ма́ксвелл публикует свою статью «Динамическая теория электромагнитного поля», которая должна была поменять мировоззрение ученых мужей в области естествознания. Однако произошло обратное – развитие физики затормозилось почти на 20 лет. Это Евангелие от Джеймса просто игнорировалось. Физики испытывали затруднения из-за обилия сложных дифференциальных уравнений в частных производных. Инерция восприятия физики только на уровне формул вроде U=RI давала о себе знать. Математикам было трудно понять Максвелла, из-за того, что он использовал для объяснений физический язык.

Существование в свободном безграничном пространстве электромагнитного излучения и его распространение со скоростью света было доказано в 1887 году Генрихом Герцем. Он провел опыты и описал возможность передачи электромагнитных волн на расстояние без проводов с помощью созданных им генератора и резонатора.

Теория Ма́ксвелла дождалась следующего поколения физиков, в первую очередь Хендрика Лоренца, чтобы раскрыть свою силу. Лоренс, выпускник уже упомянутого выше Лейденского университета, выдвинул идею, что на магнитные и электрические свойства окружающей среды оказывают мельчайшие носители зарядов – электроны. В 1875 году он защитил докторскую диссертацию, где центральная роль была отведена именно этим элементарным частицам. Сами электроны будут открыты только через 20 лет. Теория Максвелла превратится в теорию Максвелла-Лоренца: «Ничто не рождается на пустом месте».

Теория относительности Эйнштейна появится на свет именно благодаря этим научным воззрениям.

Принятие миром существование неосязаемых электромагнитных полей произошло после того, как появились первые радиопередатчики и радиоприемники.

В каждой стране есть свои герои. В споре, кто первый изобрел радио: Никола Тесла, Гульельмо Маркони или Александр Попов, возможно и Оливер Лодж, победителем все равно останется Генрих Герц. Просто ни Максвелл, ни Герц не задумывались о полезности своей работы. Такая мысль не приходила им в головы. Максвелл вообще стал вторым Менделем. Признание работ пришло после его смерти.

Часть материала подготовлено по книге: Лебедев В.И. «Электричество, магнетизм и электротехника в их историческом развитии. Дофарадеевский период». Москва-Ленинград: Технико-теоретической литература, 1937. - 179 с.

Александр Платонов

 

Другие статьи автора: 

С радиацией по жизни

Коллекция без претензий

Что в имени моем тебе…

Из историии мореплавания

Все гениальное просто. Или нет?

Едут-едут по Пекину наши казаки

Созвездие кактусов

Исаак Ньютон и его яблоко

Певец русской природы

А рельсы-то, как водится, у горизонта сходятся

Мятежный «Баунти». По следам золотоносного «Оскара»

Красота и привлекательность Фибоначчи

Из истории изобретения автомобиля

Отсюдова и дотудова. Почему мы так измеряем

Первая энциклопедия математических знаний России

Вильгельм Рентген и его всепроникающие Х-лучи

Самое непростое простое солнечное вещество

От Ламарка до… Ламарка



Комментировать статью:
Имя:
Комментарий:
Защитный код:



  • Забавные совпадения на новогодних открытках
  • Обзор выпусков почтовых марок за декабрь 2024 года
  • Одна взаимная любовь – филателия
  • Сокровищам бесценная оправа
  • Чем запомнился 2024 год в Филателии?
  • Жива ещё филателия и филокартия в Уфе
  • Художники и скульпторы Победы
  • Обзор выпусков почтовых марок за ноябрь 2024 года
  • Выставка в Шанхае China-2024. Часть 2
  • Тропами Первой Гвардейской
  • Филателистическая выставка China-2024
  • Необычное гашение почтовых марок на «Параде елок»
  • Филателистический праздник в Шанхае
  • Самая лучшая марка 2024 года
  • Почтовые карточки филателистов Башкирии. Часть 5
  • Мода — это полет бабочки
  • Код Дюшана и филателия
  • История открытки. Иван Максимович Семёнов
  • Истоки почты родного края. Находимся на станции Черниковка…
  • Космическая мощь России
  • Летчик Водопьянов — человек поступка!
  • Гордость земли башкирской
  • Географический диктант
  • Собрание филателистов города Волгограда и области
  • Винная тематика в российской филателии
  • Все побывали тут!
  • Что помогает почтовым маркам Беларуси держать марку
  • Почтовые карточки филателистов Башкирии. Часть 4
  • Каталог конвертов с оригинальной маркой СССР 1932-1991
  • Советский скульптор Вера Мухина. Окончание
  • Искусственный интеллект на почтовых марках
  • Поездка в Брест
  • Организация Объединенных Наций на почтовых марках
  • М.К. Тенишева — созидательница и собирательница
  • Советский праздник на старых открытках
  • Ожерелье чудес допетровской поры
  • Члены-учредители Петроградского общества филателистов (1923 – 1924)
  • Советский скульптор Вера Мухина
  • Филателистический туризм. Ивановская область. Часть II
  • Обзор выпусков почтовых марок за октябрь 2024 года
  • Русская Америка на почтовых марках. Стратегии репрезентации исторической памяти
  • История открытки. Ксения Конрадовна Купецио
  • Целебная сила природы
  • Вспоминая Протвино…
  • Памяти художника Числевича
  • «Чейн карды» как способ коллекционирования марок
  • Светоч русской поэзии и прозы Александр Сергеевич Пушкин
  • Путевая заметка о семинаре
  • В объятиях багряного вихря
  • Художник Эжен Грассе – автор марок к юбилею ВПС
  • Международная филателистическая выставка «Россия 2024»
  • «На чём печатают марки?». Отделка фольгой из золота
  • Пожарная охрана в России
  • Послевоенный раздел Европы. Зоны оккупации
  • Юбилейные и памятные даты 2024 года сквозь призму филателии и филокартии
  • Певец Российской славы
  • Петербургский вернисаж. Неделя почтовых коллекций-2024
  • Протокол заседания Комиссии по государственным знакам почтовой оплаты
  • Юбилей ВПС
  • Учитель с большой буквы
  • Филателистический туризм. Ивановская область
  • Отец матрёшки расписной
  • Почтовые карточки филателистов Башкирии. Часть 3
  • Юбилей Всемирного почтового союза
  • Вторая Олимпиада КНР
  • Обзор выпусков почтовых марок за сентябрь 2024 года
  • День коллекционера отметили в библиотеке
  • Огонь Парижских игр 2024 года
  • Первые олимпийские марки КНР
  • Неповторимый Джакомо Кваренги
  • Открытки из Китая в Германию 1912-1913 гг.
  • Первые шаги в филателии
  • «Тест-драйв» вендингового аппарата
  • А как храните марки ВЫ?
  • Великолепие Дымковской игрушки
  • Символ Бессмертной России
  • 120-лет со дня рождения Д.И. Гулиа
  • Филателия — это интерес и ген собирательства!
  • Не забудут имена просветителей и строителей
  • Занятие для души: тренер по карате рассказал о необычном хобби
  • Марки России. «Картонка»
  • Почтовые карточки филателистов Башкирии. Часть 2
  • Вопрос филателистам
  • Три письма из Китая
  • Пяти гениев небесная любовь
  • Друг нашей страны – художник Вернер Клемке
  • Обзор выпусков почтовых марок за август 2024 года
  • Крупнейший архитектор русского классицизма
  • История открытки. Сергей Михайлович Прокудин-Горский
  • Только хоккей!
  • Почтовые карточки филателистов Башкирии. Часть I
  • Пушкин и стиль модерн
  • Почтовые карточки для Мосмебельторга и «Книга — почтой»
  • «Дело всей жизни». Воспоминания А.М. Василевского
  • Станислав Жуковский. Необыкновенный художник
  • Дом-музей Паустовского в Тарусе
  • Что рассказывают о природе Башкирии почтовые конверты?
  • Софи Лорен: почтовое измерение
  • Марки с наклеенными элементами
  • Фауна Абхазии. Серия первая
  • Гордость Отечества. Василий Шукшин
  • Почта: интриги, скандалы, расследования...
  • Ура! Наши опять в космосе!
  • Истоки почты родного края. Возвратить в Уфу
  • Иберо-Американская выставка в Севилье
  • От звезды Давида — до звезды Героя
  • Филателистическая выставка «Брест-2024» глазами студентки
  • По анфиладе славы россиян
  • Первый выпуск стандартных марок СССР
  • Выставки на марках
  • Обзор выпусков почтовых марок за июль 2024 года
  • Выставка с секретом...
  • Н.И. Пирогов. Хирург, естествоиспытатель, педагог
  • Филателистическая выставка «Брест-2024»
  • «Абхазские динозавры» и ритмы Черного моря
  • Новые встречи с силуэтной графикой
  • Выставка с международным участием «Брест-2024»
  • Филателистическая нейроистория
  • История открытки. Рекламные открытки товарищества «Эйнем»
  • Счет потерь американских самолетов на марках Вьетнама
  • ПРОТОКОЛ заседания Комиссии по ГЗПО
  • Русский архитектор Пель
  • Надпечатки на почтовых марках
  • Новоявленные мошенники
  • По следам наших публикаций. Мир современных детей
  • Стандартный выпуск марок Республики Абхазия
  • Мемориал в Саратовской области
  • Марки нестандартной ширины
  • Трижды Вятка
  • От слов — к делу...
  • Раритеты почтовой истории России
  • Что такое «Открытая филателия»
  • Первые и последние марки Советского Союза
  • Лениниана или нет?
  • Шахматный выпуск марок Республики Абхазия
  • Торжествуй, дорогая отчизна моя!
  • Николай Самокиш – гений батальной живописи
  • Марки России. Первый выпуск, посвящённый В.И. Ленину
  • Памяти Валерия Михайловича Халилова
  • Филателистическая олимпиада
  • Некоторые занимательные факты из истории ранних коллекций бабочек в России
  • Обзор выпусков почтовых марок за июнь 2024 года
  • История открытки. Евгений Евгеньевич Лансере
  • На чём печатают марки? Марки из вторсырья
  • Денежный конверт 1824 года
  • Задорно, бодро и мажорно
  • К столетию Марчелло Мастроянни
  • Специальные почтовые штемпеля
  • Под знаком куницы
  • На чём печатают марки? Бумага, изготовленная вручную