Ежеквартальный журнал Российской ассоциации содействия ООН

Поиск по статьям:

Электричество, которое сначала открыли, а затем изобрели

2023-12-08 11:28:24, Рубрики: ФИЛАТЕЛИЯ.РУ

Это началось еще с древних времен, когда нашли магнитные руды, которые могли притягивать к себе железные предметы и ориентироваться в пространстве строго в определенном направлении. Назвали их магнитами, вероятнее всего, по названию территории Магнисии на месте современного Измира в Турции.

Но еще были известны янтарь и стекло, которые, если их потереть, тоже становились магнитами, но притягивали совсем другие предметы.

Современная наука об электричестве начала формироваться в XVI веке. И не без помощи коронованных особ, в частности Елизаветы I. 

Во времена испанской Армады корабельный компа́с играл не последнюю роль 

Первым, кто отделил магниты от веществ, способных электризоваться и притягивать к себе мелкие частицы, был Уильям Джильберт. Он считал, что природное магнитное железо стало таким благодаря Земле, которая сама является большим магнитом. Поэтому компас и ориентируется строго по полюсам. Еще ученого заинтересовал «эффект янтаря», и с его подачи появился термин «электричество». В своих печатных работах он впервые разделил магнетизм и статическое электричество.

«Уильям Джильберт демонстрирует магнит королеве Елизавете I в 1598 году». Худ. Эрнест Борд

Шарль Франсуа Дюфе выявил два рода электричества – «стеклянное» и «смоляное». Первое получается при натирании стекла, шерсти животных. Второе – при использовании янтаря, смолы. Разнородные электричества притягиваются друг к друг, однородные – отталкиваются. А это уже первая электрическая теория.

Вскоре появится первая электрическая машина трения. Отто фон Герике бросил демонстрировать свои Магдебургские колокола и создал, вращающийся на металлическом стержне, шар из чистой серы, который электризовался от трения о руки человека. Герике показал, что заряд можно передавать на расстояние посредством льняной нити – первым рукотворным проводником электричества.

В 1745 году, в славном научном граде Лейден, был создан первый конденсатор, позволяющий копить и сохранять полученный электрический заряд. Автором изобретения считается голландец Питер ван Мушенбрук.

Устройство назвали «лейденской банкой». Это стеклянный сосуд, оклеенный снаружи листовым оловом. Внутри было листовое олово или обычная вода. Для контакта с внутренней обкладкой, через горловину вставляли металлический прут. Такое устройство можно было заряжать статическим электричеством.

На основе этого изобретения создали первую электрическую цепь с последовательным соединением проводников. Было это во времена Людовика XV. Его сподвижник, физик и аббат Жан-Антуан Нолле, изобретатель электроскопа, демонстрировал перед королем в Версале как 180 мушкетеров, взявшись крепко за руки, словно по команде, одновременно вскрикивали и делали судорожные движения. Скорость распространения электричества была практически мгновенная.

Позже в таком же эксперименте поучаствуют 200 духовных братьев из парижских монастырей, составивших цепь контуженных монахов. Это стало самым модным зрелищем той поры. Многие смельчаки из публики хотели на себе испытать удар электрического разряда от «банки смерти».

Практически сразу же после этого наступило время человека «отнявшего молнию у небес и власть у тиранов». Конституцию Соединенных Штатов Америки отставим в сторону и поговорим о вкладе Бенджамина Франклина в развитие учения об электричестве.

Во-первых, он изменил теорию Дюфе о двух родах электричества. Электричество бывает только одно. Разделение материалов на два класса объясняется избытком или недостатком этого самого электричества. У «стеклянного» электричества имеется избыток, поэтому это «+». У «смоляного» - недостаток, поэтому это «-».

Во-вторых, о существовании электрона еще никто не подозревал, но заряд уже перемещался от плюса, где его много, к минусу, где его мало.

В-третьих, заряд мог концентрироваться на острых выступах предметов и даже стекать с них, электризуя воздух. На опытах было показано, как заряд с острия иглы сдувает пламя свечи или вращает колесо, создавая движущую силу (колесо Франклина). Это свойство стекания заряда с острия позволило при изучении природы молнии создать от нее защиту в виде громоотвода. Атмосферное электричество имеет ту же природу, что и получаемое от трения в лабораторных условиях и быту.

Среди ученых, занимавшихся изучением электричества, был один, который интересовался не столько его природой, но и тем, как измерить величину зарядов и силу взаимодействия между ними.

Наверное, вы уже догадались, что речь идет о Шарле Кулоне и его законе.

Оказалось, что заряды взаимодействуют так же, как и планеты в законе Всемирного тяготения. Это было установлено с помощью крутильных весов, изобретенных Кулоном.

Полученная формула – почти калька с закона тяготения Исаака Ньютона. Заряды выступают вместо масс планет. Гравитационная постоянная была заменена на относительную диэлектрическую проницаемость среды k. Разница в том, что заряды могут еще и отталкиваться друг от друга. Все зависит от их знака. Поэтому значения величин берутся по модулю. Прослеживается общность законов природы. Как яблоко Ньютона притягивает к себе Землю, так и сухие волосы притягиваются к расчестке.

Электричество становилось точной наукой. Не хватало только общей теории. Исправил ситуацию Георг Ом. Он, введя понятие сопротивления R, теоретически, с практическим подтверждением результатов, открыл свой знаменитый закон. Сила тока во всех точках электрической цепи одинакова. Зависит от электродвижущей силы и сопротивления цепи.

Такой простой закон был принят научным сообщество скептически. Официально он стал законом, когда появилось подтверждение в виде законов Густава Кирхгофа о ветвлении токов и всеобщего закона сохранения энергии Германа Гельмгольца.

Настало время изобретения электричества. Знаний было накоплено уже достаточно. Сделали это Луиджи Гальвани и Алессандро Вольта. Первый, препарируя лягушку рядом с электрической машиной, обратил внимание, что мышцы земноводного сокращаются под воздействием электрического заряда. Второй, очень внимательный человек, заметил, что это происходит, если электрическая цепь замкнута, а в качестве проводников используются разнородные металлы.

Все знают с детства, как пощипывает на языке контакты батарейки, и какой у нее вкус – с кислинкой. Вольтов столб состоял из пар разнородных пластин, например, цинк и медь. Между ними – прокладка из бумаги, пропитанная щелочным раствором. Такая конструкция генерировала постоянный ток. Цинковая пластина давала минус, медная – плюс. Такую ячейку назвали гальваническим элементом. Вольта установил свой первый стандартный ряд электродных потенциалов: Zn→Pb→Sn→Fe→Cu→Ag→Au→C. Сила генератора постоянного тока зависела от выбора пары элементов из этого ряда и их количества.

В 1800 году наступила эра электричества. Благодаря Алессандро Вольта мир получил генератор постоянного тока. Был создан первый источник освещения электрическим током. Авторство принадлежит русскому ученому Василию Петрову. Собрав в 1803 году вольтов столб из 4200 медных и цинковых кругов и напряжением в 1700 вольт, он осветил светом комнату от электрической дуги. Вот только почтовую марку в его честь выпустить не представляется невозможным. История не сохранила ни одного его портрета.

Но есть почтовые миниатюры, посвященные изобретениям Павлу Яблочкову и Николаю Бенардосу, которые тоже нашли практическое применение дуге Вольта.

Гальванизм – новый термин. Потом его назовут электролизом. Он пришелся по душе химикам. Взяв воду из реки и пропустив через нее ток, они получили на разных полюсах водород и кислород. Причем водорода по объему получилось в два раза больше, чем кислорода. Чем не химическая формула Н2О?

Хамфри Дэви стал основоположником первой электрохимической теории. С помощью электрического тока он получил новые элементы: калий, натрий, магний, стронций, барий, кальций, литий. А приняв на работу в лабораторию мыть пробирки молодого подмастерья переплетчика, дал миру Майкла Фарадея. Его электрохимическую теорию поддержал Йёнс Якоб Берцелиус. Все атомы в веществе несут либо положительный, либо отрицательный заряд. Мы и сейчас химические формулы пишем, как завещал великий Берцелиус, присваивая атомам ту или иную валентность.

В 1819 году ученые опять вернулись к магниту и больше с ним не расставались. Ханс Эрстед сделал открытие – воздействие электрического тока на магнитную стрелку. Над магнитной стрелкой помещался прямолинейный провод, направленный ей параллельно, т.е. с юга на север. При пропускании электрического тока стрелка поворачивалась перпендикулярно проводнику. Обратное направление тока приводило к повороту стрелки на 180 градусов. И все равно, перпендикулярность оставалась прежней, даже при криволинейном проводе (для каждого участка она была своя). Теперь электрический ток и магнит будут неразрывно вместе, а их поля останутся взаимно перпендикулярными.

Андре-Мари Ампер был первым, кто теоретически обосновал связь между электричеством и магнетизмом. К этому его подтолкнул его друг Доминик Араго, который установил, что провод с током намагничивает железные опилки. По сути, это был первый электромагнит.

Ампер пошел дальше. Уже два параллельных провода, при пропускании по ним тока, начинали притягиваться или отталкиваться друг от друга. В результате многочисленных опытов был сделан вывод о единой сущности электричества и магнетизма. И были заложены основы нового направления физики – электродинамики.

Электродинамика как самостоятельная наука начала развиваться, когда Майкл Фарадей решил превратить магнетизм в электричество. И выполнил эту задачу с блеском. Попытка использовать электромагнит в обратном направлении – с помощью магнита получить электрический ток – привела к открытию электромагнитной индукции. Изменение внешнего магнитного поля вызвало появление электродвижущей силы в проводнике. В результате был построен первый электрогенератор постоянного тока.

Второе направление исследований Фарадея – электрохимия. Без открытых им двух законов, связанных с электролизом, невозможно представить сегодняшнее получение алюминия и меди, водорода и хлора. Есть еще масштабное производство аккумуляторов. Кроме этого, существуют промышленные процессы по нанесению защитных покрытий (гальваностегия, анодирование), воспроизведение форм предметов (гальванопластика). Так что, идея гальванизма живет и процветает.

В 1865 году Джеймс Ма́ксвелл публикует свою статью «Динамическая теория электромагнитного поля», которая должна была поменять мировоззрение ученых мужей в области естествознания. Однако произошло обратное – развитие физики затормозилось почти на 20 лет. Это Евангелие от Джеймса просто игнорировалось. Физики испытывали затруднения из-за обилия сложных дифференциальных уравнений в частных производных. Инерция восприятия физики только на уровне формул вроде U=RI давала о себе знать. Математикам было трудно понять Максвелла, из-за того, что он использовал для объяснений физический язык.

Существование в свободном безграничном пространстве электромагнитного излучения и его распространение со скоростью света было доказано в 1887 году Генрихом Герцем. Он провел опыты и описал возможность передачи электромагнитных волн на расстояние без проводов с помощью созданных им генератора и резонатора.

Теория Ма́ксвелла дождалась следующего поколения физиков, в первую очередь Хендрика Лоренца, чтобы раскрыть свою силу. Лоренс, выпускник уже упомянутого выше Лейденского университета, выдвинул идею, что на магнитные и электрические свойства окружающей среды оказывают мельчайшие носители зарядов – электроны. В 1875 году он защитил докторскую диссертацию, где центральная роль была отведена именно этим элементарным частицам. Сами электроны будут открыты только через 20 лет. Теория Максвелла превратится в теорию Максвелла-Лоренца: «Ничто не рождается на пустом месте».

Теория относительности Эйнштейна появится на свет именно благодаря этим научным воззрениям.

Принятие миром существование неосязаемых электромагнитных полей произошло после того, как появились первые радиопередатчики и радиоприемники.

В каждой стране есть свои герои. В споре, кто первый изобрел радио: Никола Тесла, Гульельмо Маркони или Александр Попов, возможно и Оливер Лодж, победителем все равно останется Генрих Герц. Просто ни Максвелл, ни Герц не задумывались о полезности своей работы. Такая мысль не приходила им в головы. Максвелл вообще стал вторым Менделем. Признание работ пришло после его смерти.

Часть материала подготовлено по книге: Лебедев В.И. «Электричество, магнетизм и электротехника в их историческом развитии. Дофарадеевский период». Москва-Ленинград: Технико-теоретической литература, 1937. - 179 с.

Александр Платонов

 

Другие статьи автора: 

С радиацией по жизни

Коллекция без претензий

Что в имени моем тебе…

Из историии мореплавания

Все гениальное просто. Или нет?

Едут-едут по Пекину наши казаки

Созвездие кактусов

Исаак Ньютон и его яблоко

Певец русской природы

А рельсы-то, как водится, у горизонта сходятся

Мятежный «Баунти». По следам золотоносного «Оскара»

Красота и привлекательность Фибоначчи

Из истории изобретения автомобиля

Отсюдова и дотудова. Почему мы так измеряем

Первая энциклопедия математических знаний России

Вильгельм Рентген и его всепроникающие Х-лучи

Самое непростое простое солнечное вещество

От Ламарка до… Ламарка



Комментировать статью:
Имя:
Комментарий:
Защитный код:



  • История открытки. Рекламные открытки товарищества «Эйнем»
  • Счет потерь американских самолетов на марках Вьетнама
  • ПРОТОКОЛ заседания Комиссии по ГЗПО
  • Русский архитектор Пель
  • Надпечатки на почтовых марках
  • Новоявленные мошенники
  • По следам наших публикаций. Мир современных детей
  • Стандартный выпуск марок Республики Абхазия
  • Мемориал в Саратовской области
  • Марки нестандартной ширины
  • Трижды Вятка
  • От слов — к делу...
  • Раритеты почтовой истории России
  • Что такое «Открытая филателия»
  • Первые и последние марки Советского Союза
  • Лениниана или нет?
  • Шахматный выпуск марок Республики Абхазия
  • Торжествуй, дорогая отчизна моя!
  • Николай Самокиш – гений батальной живописи
  • Марки России. Первый выпуск, посвящённый В.И. Ленину
  • Памяти Валерия Михайловича Халилова
  • Филателистическая олимпиада
  • Некоторые занимательные факты из истории ранних коллекций бабочек в России
  • Обзор выпусков почтовых марок за июнь 2024 года
  • История открытки. Евгений Евгеньевич Лансере
  • На чём печатают марки? Марки из вторсырья
  • Денежный конверт 1824 года
  • Задорно, бодро и мажорно
  • К столетию Марчелло Мастроянни
  • Специальные почтовые штемпеля
  • Под знаком куницы
  • На чём печатают марки? Бумага, изготовленная вручную
  • Филателистический футбол
  • Божественная красота бабочек в филателии
  • Le petit Santos — Герой Бразилии
  • Марки России. Первые почтовые марки СССР
  • Уфа. До востребования…
  • Третий – гудаутский – геральдический выпуск марок Республики Абхазия
  • Верный сын башкирского народа
  • Второй – гудаутский – выпуск марки Республики Абхазия
  • Первый – гудаутский – выпуск марок Республики Абхазия
  • Пушкин в Михайловском. История одной картины
  • Мемориальные музеи А.С. Пушкина
  • Марки России. Первые стандартные выпуски марок РСФС
  • Как юные филателисты КЮФ «Первая марка» провели первый день лета
  • От Москвы до самых до окраин...
  • История почты и социальная филателия. Аннотации к докладам
  • Обзор выпусков почтовых марок за май 2024 года
  • Эльза Бесков – настоящий друг детей
  • История открытки. Александр Петрович Апсит
  • Гений кисти. К юбилею Карла Брюллова
  • История в почтовых знаках, или Что марки рассказывают о Башкирии?
  • Образный строй сюрреализма. Альфред Кубин
  • Первые памятные марки Америки
  • Абхазия и фантазии
  • Первые перелеты через океан
  • Образный строй сюрреализма. Сальвадор Дали
  • Это моя правда...
  • На конверте — наши герои
  • Абрамцево. Виртуальная филателистическая экскурсия
  • Толя Сыромятников из Братска
  • ПРОТОКОЛ заседания Комиссии по ГЗПО
  • Русский архитектор Ефимов
  • Музыка на крыльях бабочки в филателии
  • Драгоценные письма с фронта
  • Неожиданно — наш дважды соотечественник
  • Малая Родина. Магнитогорску – 95 лет!
  • Освобождение Красной Армией концлагерей на территории Европы
  • История почты и социальная филателия
  • Обзор выпусков почтовых марок за апрель 2024 года
  • Музеи почт и почтовых марок стран мира
  • Особенный филателист
  • Тема театра в филателии
  • Декабристы в окружении А.С. Пушкина
  • Эстетика милосердия
  • О башкире-певце и бесстрашном бойце
  • Памяти выдающейся писательницы
  • Рисунки на почтовых конвертах
  • Космическая фантастика на почтовых марках
  • Обращение к коллекционерам
  • Любимый архитектор императрицы
  • По следам наших публикаций. Вносим ясность
  • В наш дом пришел Мурзилка
  • Футуризм на спортивных марках
  • История открытки. Художник Сергей Сергеевич Соломко
  • Вопрос от юного филателиста
  • Н.К. Рерих глазами филателиста
  • Башкирия в филателии. Сталевар В.А. Захаров
  • Об одном импровизированном почтовом отделении
  • Литературное и художественное окружение А.С.Пушкина
  • ПРОТОКОЛ заседания Комиссии по ГЗПО
  • Итальянский футуризм
  • Тульские открытки 150 лет назад
  • Чайковский в филателии
  • Королевство Седанг. Неизвестные страницы истории известного Королевства
  • Сколько стоят марки?
  • Обзор выпусков почтовых марок за март 2024 года
  • Классификация филателистов по видам
  • Мир Оскара Кокошки: филателистический взгляд
  • Микеланджело Севера – Северной Пальмире
  • Большая коллекция марок
  • Вселенная Эдвина Хаббла
  • Архитектор Гаральд Юлиус Боссе
  • О художнике, путешествиях и почтовых конвертах
  • Редкие открытки про выборы в СССР
  • Марки России. Первый коммеморативный выпуск марок Российской империи
  • Генерал-архитектор Санкт-Петербурга
  • О моей филателии
  • К 90-летию со дня рождения Юрия Гагарина. Визит в Индию
  • Филателистический букет из орхидей
  • Из Казанской губернии – к Казанскому собору
  • Бабочки в архитектуре и скульптуре мира, отраженной в филателии
  • Филателистическая программа XII Всемирного фестиваля молодёжи и студентов
  • По следам наших публикаций. Не каталожные разновидности цвета
  • Фестиваль молодежи — фестиваль мира
  • Почтовые призраки. Свободное государство Акри
  • К 240-летию со дня рождения архитектора Лео фон Кленце
  • Обзор почтовых марок за февраль 2024 года
  • История открытки. Двухсторонние маркированные карточки
  • Круглый стол. Загадка одной марки
  • Филателистические выставки эпохи модерна. Опыт культурологической реконструкции
  • Спорт в пожарной охране
  • По следам наших выступлений. Кинешма на марках и конвертах
  • Юбилей русского архитектора Гёдике
  • Рубрика «Достучаться до САМОГО». Юбилей Пушкина
  • Почтовые призраки. Остров Роз
  • Как рождается «редкость»?
  • Пожарная техника в филателии
  • Марки рассказывают о стиле граффити
  • Охотники за светом
  • Спортивный дух и филателистический азарт
  • Профессия - пожарный
  • История Суздаля в искусстве почтовой миниатюры
  • Москва, я думал о тебе!
  • Острова, «призраки» и... козы
  • Китайский Новый год в филателии
  • Российской академии наук — 300 лет
  • История в марке
  • Филателия — больше, чем увлечение
  • Самая дорогая марка вашей коллекции
  • История Сталинградского театра
  • Люди - как цветы
  • Малая Родина. Курская область на почтовых марках
  • Наш Сталинград. Помним и гордимся
  • Открытие экспозиции «Пожарная охрана на почтовых марках и конвертах»
  • Сталинградская битва – сражение, изменившее ход войны
  • С 300-летием, Монетный двор!!!
  • Итоги голосования
  • Обзор почтовых марок за январь 2024 года
  • Как мы пришли в Филателию!